Recognition of Smart Objects by a Mobile Robot using SIFT-based Image Recognition and Wireless Communication

نویسندگان

  • Matteo Danieletto
  • Marco Mina
  • Andrea Zanella
  • Pietro Zanuttigh
  • Emanuele Menegatti
چکیده

In this work, we focus on the problem of object location and recognition by an autonomous mobile robot. In our approach, the robot does not have any prior knowledge about the form and multiplicity of the objects. The robot, however, is equipped with an onboard camera and both objects and robot are capable of exchanging data by using a common low-cost, low-rate wireless technology, namely a TmoteSky mote. The small storage memory of the mote is used to store a simple communication protocol and a description of the physical appearance of the object, encoded by means of a set of Scale Invariant Feature Transform (SIFT) descriptors. The mobile robot queries the surrounding smart objects by sending a broadcast query packet through the wireless interface. The smart objects that receive such a query reply by sending their ID and a selection of the SIFTS that describe their appearance. When a subset of the SIFT descriptors extracted by the current image of the robot’s camera matches the SIFT descriptors received from a smart objects, the robot can locate the object in its current view and autonomously navigate towards the object, interacting with it.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discovery, Localization and Recognition of Smart Objects by a Mobile Robot

This paper presents a robotic system that exploits Wireless Sensor Network (WSN) technologies for implementing an ambient intelligence scenario. We address the problems of robot object discovery, localization, and recognition in a fully distributed way. We propose to embed some memory, some computational power, and some communication capability in the objects, by attaching a WSN mote to each ob...

متن کامل

Object Recognition based on Local Steering Kernel and SVM

The proposed method is to recognize objects based on application of Local Steering Kernels (LSK) as Descriptors to the image patches. In order to represent the local properties of the images, patch is to be extracted where the variations occur in an image. To find the interest point, Wavelet based Salient Point detector is used. Local Steering Kernel is then applied to the resultant pixels, in ...

متن کامل

Evaluation of the SIFT Object Recognition Method For a Mobile Robotic Platform

This paper addresses object perception applied to mobile robotics. Being able to perceive semantically meaningful objects in unstructured environments is a key capability in order to make robots suitable to perform high-level tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera ...

متن کامل

Object Search and Localization for an Indoor Mobile Robot

In this paper we present a method for search and localization of objects with a mobile robot using a monocular camera with zoom capabilities. We show how to overcome the limitations of low resolution images in object recognition by utilizing a combination of an attention mechanism and zooming as the first steps in the recognition process. The attention mechanism is based on receptive field cooc...

متن کامل

Evaluation of the Vocabulary Tree Object Recognition Method For a Mobile Robotic Platform

This paper addresses object perception applied to mobile robotics. Being able to perceive semantically meaningful objects in unstructured environments is a key capability in order to make robots suitable to perform high-level tasks in home environments. However, finding a solution for this task is daunting: it requires the ability to handle the variability in image formation in a moving camera ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009